动态规划问题 最长公共子序列

Java 源码解读
Java 集合类源码,JUC 源码解读
wangxiaoming


                                              动态规划问题

最长公共子序列

时间限制:3000 ms  |  内存限制:65535 KB
难度:3
描述
咱们就不拐弯抹角了,如题,需要你做的就是写一个程序,得出最长公共子序列。
tip:最长公共子序列也称作最长公共子串(不要求连续),英文缩写为LCS(Longest Common Subsequence)。其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已知序列的最长公共子序列。
输入
第一行给出一个整数N(0<N<100)表示待测数据组数
接下来每组数据两行,分别为待测的两组字符串。每个字符串长度不大于1000.
输出
每组测试数据输出一个整数,表示最长公共子序列长度。每组结果占一行。
样例输入
2
asdf
adfsd
123abc
abc123abc
样例输出
3
6
来源
经典
上传者
hzyqazasdf

动态规划规划公式:

                   


最长公共子序列过程


#include<iostream>
#include<cstring>
using namespace std;
const int Max = 1000;
inline int max(int a, int b)
{
   return a>b?a:b;
}
int main()
{
    //最长公共子序列问题LCS问题
    //dp[i, j] 表示的是X的前i个字符与Y的前j个字符的最长公共子序列
    int n ;
    cin>>n;
    char str1[Max];
    char str2[Max];
    int dp[Max][Max];
    while(n--)
    {
        cin>>str1>>str2;
        int len1 = strlen(str1);
        int len2 = strlen(str2);
        //先进行赋值清0
        for(int i = 0; i <= len1;i++)
        {
            dp[i][0] = 0;
        }
        for(int j = 0 ; j <= len2 ;j++)
        {
            dp[0][j] = 0;
        }
        for(int i = 1; i<= len1; i++)
        {
            for(int j = 1 ; j <= len2; j++)
            {
                if(str1[i-1] == str2[j-1])
                {
                    //如果相同那么加1
                    dp[i][j] = dp[i-1][j-1] + 1;
                }
                else
                {
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
                }
            }
        }
        cout<<dp[len1][len2]<<endl;
    }
    return 0;
}


wangxiaoming CSDN认证博客专家 架构 Spring Boot Redis
博客是很好的总结和记录工具,如果有问题,来不及回复,关注微信公众号:程序员开发者社区,获取我的联系方式,向我提问,也可以给我发送邮件,联系 1275801617@qq.com
©️2020 CSDN 皮肤主题: Age of Ai 设计师: meimeiellie 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值