矩阵快速幂 与快速幂的求解

深入理解数据库原理
以实战为基础,以数据库原理为基础,结合实战,深入理解数据库原理。
wangxiaoming

                                      矩阵快速幂 与快速幂的求解  


矩阵快速幂 ,这里之研究方阵就可以了;

矩阵运算 这里算乘法  要重载运算符  重载乘法运算符和求幂运算符
 
快速幂的思想简单
 例如 :
    

       求  a^7   那么   先求a  之后 求a^2  求 a^3 求 a^6 求a^7  即可得到结果 ,
     具体的看代码:

#include<iostream>
using namespace std;

int quickpow(int a, int n)
{
    int p = 1;
    int q = a;
    while(n)
    {
        if(n&1)
          p = q*p;
          q = q*q;
          n>>=1;
    }
    return p;
}
int main()
{
    int a ,n;
    while(cin>>a>>n)
    {
        int ans = quickpow(a, n);
        cout<<"计算 "<<a<<" 的"<<n<<"次方: "<<ans<<endl;
    }
    return 0;
}


最后是矩阵快速幂的求解   这里都没有求模 
看代码:
#include<iostream>
using namespace std;
const  int len =3;

struct Mat
{
    int mat[len][len];
};
Mat e = { 1,0,0,
          0,1,0,
          0,0,1};

Mat operator*(Mat a, Mat b)
{//这里只是针对方阵相乘
    int i , j , k;
    Mat c;
    for (i = 0 ; i < len ; i++)
    {
        for(j = 0 ; j < len ; j++)
        {
            c.mat[i][j]= 0;
            for(k = 0 ; k < len ; k++)
            {
                c.mat[i][j] += a.mat[i][k]*b.mat[k][j];
            }
        }
    }
    return c;
}
Mat operator^(Mat a, int n)
{//矩阵快速幂 这里只算三阶
    Mat p = e;
    Mat q = a;
    while(n)
    {
        if(n&1)
        {
            p = p*q;
        }
           q = q*q;
        n>>=1;
    }
    return p;
}

int main()
{//上面的意思友点类似于运算符重载
    int i, j;
    Mat  q = {1,0,1,
              0,1,1,
              2,3,3};
    Mat p = q^3;
    for(i = 0 ; i < 3;i++)
    {
        for(j = 0;j < 3;j++)
        {
            cout<<p.mat[i][j]<<" ";
        }
        cout<<endl;
    }
    return 0;
}



wangxiaoming CSDN认证博客专家 架构 Spring Boot Redis
博客是很好的总结和记录工具,如果有问题,来不及回复,关注微信公众号:程序员开发者社区,获取我的联系方式,向我提问,也可以给我发送邮件,联系 1275801617@qq.com
©️2020 CSDN 皮肤主题: Age of Ai 设计师: meimeiellie 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值