博弈论 ,一个新的取石子游戏

                         一个新的取石子游戏 


                    A 和B准备玩一个游戏,  开始有N个盘子, 每个盘子上有一些石子,  A B轮流取石子, 每次 取石子的人必须从N个盘子中, 选择一个盘子,然后拿找至少一个石子, ,然后将拿到的石子可以以任意方式分配到剩余的其他盘子中, 也可以不分配,直接丢掉,再也不能取石子的那个人为负。
   Input: 
                   输入第一个正整数 N  接下来一行有N个数字,表示第i个盘子中有i个石子, 每个数字不会超过一百
   output:
          A是先手,如果A能赢得比赛输出1 否则输出0 


解题思路:   分析必败态 
                               1、如果堆为偶数,但是不成对,例如1 2 3 4 5 6  可以把6分配一下 变成 1 1 3 3 5 5  先手胜
                                     如果取石子的数目是成对偶数的,  1 1 3 3 5 5 6 6 那么后手必胜  先手必败
                               2、 如果堆数不成对为奇数, 如1 2 3 4 5  先后可以  把5 分配给前面四个 那么就变成  2 2 4 4  先手必胜

看代码:
#include<iostream>
#include<cstdio>
using namespace std;

int a[1000] ;
int main()
{/*题目大意
     A=有N堆石子,柿子树任意, A B两个人去取石子
     至少取一个数量不限, 直到最后一个人不能取为负   */
    int n;
    while(scanf("%d", &n) && n)
    {//解题思路,必败态只有一种, 石子成对出现,必败
         bool flag ;
         //输入数据
         for( int i = 0 ; i < n ; i++)
         {
             scanf("%d", &a[i]);
         }
         if(n%2 == 0)
         {
             flag = true;
             for(int i = 0 ; i < n && flag; i+=2)
             {
                 if(a[i] != a[i+1])
                 {
                     flag = false;
                 }
             }
             printf("%d\n", flag ? 0: 1);
         }
         else{ printf("1\n");};
    }
    return 0 ;
}


                                
                                 

wangxiaoming CSDN认证博客专家 架构 Spring Boot Redis
博客是很好的总结和记录工具,如果有问题,来不及回复,关注微信公众号:程序员开发者社区,获取我的联系方式,向我提问,也可以给我发送邮件,联系 1275801617@qq.com
©️2020 CSDN 皮肤主题: Age of Ai 设计师: meimeiellie 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值