矩阵运算及 快速幂求矩阵

实战 Java 并发编程
实战为导向,从Java 并发原理出发,并集合开发实践,全面剖析 Java 并发编程。
wangxiaoming

                                                      矩阵运算

矩阵运算(这里主要是针对方阵)是很重要的一个环节,先说加法吧:

加法比较简单,同行同列想加就可以运算的
代码:
Mat operator+(Mat a, Mat b)
{
    int i , j , k ;
    Mat
    for(i = 0 ; i < len ; i++)
    {

        for(j = 0 ; j < len ; j++)
        {

            c.mat[i][j] = a.mat[i][j] + b.mat[i][j];
        }
    }
}

其次就是乘法
原理也简单: 线性代数应该学过, a[i][k] 和 b[k][j] 和做乘积运算得到c[i][j] 
代码:
Mat operator*(Mat a, Mat b)
{
    int i , j, k;
    Mat c;
    for(i = 0;i < len ; i++)
    {
        for(j = 0 ; j <len ;j++)
        {
            c.mat[i][j] = 0;
            for(k = 0 ; k < len;k++)
            {
                c.mat[i][j] = (a.mat[i][k] *b.mat[k][j])%MOD;
            }
        }
    }
    return c;
}

至于快速幂在ACM 中是非常重要的,当我上ACM的第一天我就知道了当时是个毛头小子什么都不懂的
先说下快速幂快速幂算法旺旺和求模放在一起 这里将输入的n 看做是二进制数因此进行while (n) 判断是否为0 
看代码:
int model_exp(int a, int n)
{
    int ret = 1;
    while(n)
    {
        if(n&1)//奇偶判断
            ret = ret*a%MOD;
        n>>=1;//右移一维操作
        a = a*a ;
    }
    return ret;
}

完整测试代码:
#include<iostream>
using namespace std;

const int MOD = 1000000;
int model_exp(int a, int n)
{
    int ret = 1;
    while(n)
    {
        if(n&1)//奇偶判断
            ret = ret*a%MOD;
        n>>=1;//右移一维操作
        a = a*a ;
    }
    return ret;
}
int main()
{
    int a , n;
    while(cin>>a>>n)
    {
        int ans = model_exp(a, n);
        cout<<ans<<endl;
    }
    return 0;
}


到这里其实矩阵也差不多
看代码:
Mat operator^(Mat a, int x)
{//这里p为单位阵
    Mat p = e, q = a;
    while(x)
    {
        if(x&1)
            p = p*q;
        x>>=1;
        q = q*q;
    }
    return p;
}

以上就是快速幂的算法的主要内容,还有遇到以后补充。。。


wangxiaoming CSDN认证博客专家 架构 Spring Boot Redis
博客是很好的总结和记录工具,如果有问题,来不及回复,关注微信公众号:程序员开发者社区,获取我的联系方式,向我提问,也可以给我发送邮件,联系 1275801617@qq.com

YOLOv3目标检测:原理与源码解析

06-07
Linux创始人Linus Torvalds有一句名言:Talk is cheap, Show me the code.(冗谈不够,放码过来!)。 代码阅读是从入门到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新。   YOLOv3是一种基于深度学习的端到端实时目标检测方法,以速度快见长。 YOLOv3的实现Darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。   本课程将解析YOLOv3的实现原理和源码,具体内容包括:      YOLO目标检测原理       神经网络及Darknet的C语言实现,尤其是反向传播的梯度解和误差计算       代码阅读工具及方法       深度学习计算的利器:BLAS和GEMM       GPU的CUDA编程方法及在Darknet的应用       YOLOv3的程序流程及各层的源码解析   本课程将提供注释后的Darknet的源码程序文件。   除本课程《YOLOv3目标检测:原理与源码解析》外,本人推出了有关YOLOv3目标检测的系列课程,包括:   《YOLOv3目标检测实战:训练自己的数据集》   《YOLOv3目标检测实战:交通标志识别》   《YOLOv3目标检测:原理与源码解析》   《YOLOv3目标检测:网络模型改进方法》   建议先学习课程《YOLOv3目标检测实战:训练自己的数据集》或课程《YOLOv3目标检测实战:交通标志识别》,对YOLOv3的使用方法了解以后再学习本课程。
©️2020 CSDN 皮肤主题: Age of Ai 设计师: meimeiellie 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值