matlab 数字图像处理 图像增强 空域 直方图修正

实战 Java 并发编程
实战为导向,从Java 并发原理出发,并集合开发实践,全面剖析 Java 并发编程。
wangxiaoming

                                               直方图修正

                         因为人体视觉的系统构造  只有当一副图像各灰度级均匀的分布时,才能形成高对比让人类可以看清图像
1、读入一副图像:
            下面看代码:
              
clear all;
close all;
t = imread('2.jpg');%读入一张图片并且显示
figure, imshow(t);
title('原始图像');  
图像:

其次就是要将彩色图像转换为黑白图像然后进行图像处理:

    1、这里要用到的是rgb2gray() 函数进行转换2、 然后用imwrite(gamp,'name'); 生成黑白图像

     代码:
    
clear all;
close all;

t = imread('2.jpg');
%让图像变成黑白
gamp =rgb2gray(t);
imwrite(gamp,'huise2.jpg');

I = imread('huise2.jpg');
figure,imshow(I);
title('灰色图像');

图像:
下面是对其直方图操作 :
          也即直方图均衡化 ,直方图均衡化原理自行百度,其实就是将其分成不同灰度级 然后。。。忘了貌似是取一个函数,待会翻书温习下。。
          这里要注意的是  1、imhist 函数使用   2、 histeq函数的使用 其他也就没什么了
代码:
%直方图修正 灰度级[1 ,L-1]
%直方图修正是空域的也即是时域的是离散的函数 h(rk) = nk;
%意思是灰度级为rk nk为灰度级为rk的像素个数
%如果图像占有全部的灰度级并且均匀分布这样的图像具有高对比度和多变的灰色亮度
%s = T(r)  
clear all;
close all;

I = imread('huise2.jpg');
%直方图并且显示 imhist(I,n) 函数n 为指定灰度级数目默认为256
figure, imhist(I);
%设置坐标
ylim('auto');
title('原图像的直方图');

%对直方图均衡化histeq(I, n) 希望均衡化后有n 个灰度级
g = histeq(I, 128);
figure, imshow(g); %均衡化后的图像
title('均衡化之后的图像');

figure, imhist(g);
ylim('auto');
title('均衡化之后的直方图');


运行结果图像: 
     






    
wangxiaoming CSDN认证博客专家 架构 Spring Boot Redis
博客是很好的总结和记录工具,如果有问题,来不及回复,关注微信公众号:程序员开发者社区,获取我的联系方式,向我提问,也可以给我发送邮件,联系 1275801617@qq.com
©️2020 CSDN 皮肤主题: Age of Ai 设计师: meimeiellie 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值