单边正弦信号拉斯变换 matlab

                                                 单边正弦信号拉氏变换

 拉普拉斯变换拉普拉斯变换应用数学中常用的一种积分变换,又名拉氏转换,其符号为\displaystyle\mathcal{L} \left\{f(t)\right\}。拉氏变换是一个线性变换,可将一个有引数实数tt ≥ 0)的函数转换为一个引数为复数s的函数。

应用:有些情形下一个实变量函数在实数域中进行一些运算并不容易,但若将实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往在计算上容易得多。拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。

基本定义[编辑]

如果定义:

f(t)\,拉普拉斯变换由下列式子给出:

F(s)\,=\mathcal{L}\left\{f(t)\right\}=\int_{0}^\infty f(t)\,e^{-st} \,dt

拉普拉斯变换的基本性质[编辑]

\mathcal{L}\left\{a f(t) + b g(t) \right\}  = a \mathcal{L}\left\{ f(t) \right\} +    b \mathcal{L}\left\{ g(t) \right\}
  • 时域微分(单边拉普拉斯变换)
\mathcal{L}\{f'\}  = s \mathcal{L}\{f\} - f(0)
\mathcal{L}\{f''\}  = s^2 \mathcal{L}\{f\} - s f(0) - f'(0)
\mathcal{L}\left\{ f^{(n)} \right\}  = s^n \mathcal{L}\{f\} - s^{n - 1} f(0) - \cdots - f^{(n - 1)}(0)
  • s域微分
\mathcal{L}\{ t f(t)\}  = -F'(s)
\mathcal{L}\{\,t^nf(t)\} = (-1)^nD_s^n[F(s)]
  • s域积分
\mathcal{L}\left\{ \frac{f(t)}{t} \right\} = \int_s^\infty F(\sigma)\, d\sigma
\mathcal{L} \left\{\frac{f(t)}{t^n}\right\} = \int_s^{\infty} \int_{\sigma_1}^{\infty} \cdots \int_{\sigma_{n-1}}^{\infty} F(\sigma_{n}) \, d\sigma_{n} \cdots \, d\sigma_2 \, d\sigma_1
\mathcal{L}\left\{ \int_0^t f(\tau)\, d\tau \right\}  = \mathcal{L}\left\{ 1 * f(t)\right\} = {1 \over s} \mathcal{L}\{f\}
f(0^+)=\lim_{s\to \infty}{sF(s)} ,要求{F(s)}为真分式,即分子的最高次小于分母的最高次,否则使用多项式除法{F(s)}分解
f(\infty)=\lim_{s\to 0}{sF(s)} ,要求{F(s)}的所有极点都在左半复平面或原点为单极点。
终值定理的实用性在于它能预见到系统的长期表现,且避免部分分式展开。如果函数的极点在右半平面,那么系统的终值未定义(例如:e^t\, 或 \sin(t)\,)。
  • s域平移
\mathcal{L}\left\{ e^{at} f(t) \right\}  = F(s - a)
\mathcal{L}^{-1} \left\{ F(s - a) \right\}  = e^{at} f(t)
  • 时域平移
\mathcal{L}\left\{ f(t - a) u(t - a) \right\}  = e^{-as} F(s)
\mathcal{L}^{-1} \left\{ e^{-as} F(s) \right\}  = f(t - a) u(t - a)
注: u(t)\, 表示阶跃函数.
\mathcal{L} \left\{f(t) * g(t)\right\} = \frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}F(\sigma)G(s-\sigma)\,d\sigma \ = \frac{1}{2\pi i} \mathcal{L}\{ f(t) \}*\mathcal{L}\{ g(t) \} ,c\,是收敛区间的横坐标值,是一个实常数且大于所有F(\sigma)\,的个别点的实部值。
\mathcal{L}\left\{f(t) * g(t)\right\}  =  \frac{1}{2\pi i} \mathcal{L}\{ f(t) \}* \mathcal{L}\{ g(t) \}
这个不想多说 维基百科解释的很好 以上就是来自维基  ,大家自行百度。
下面给出一个例题:

6-1:已知连续时间信号,求出该信号的拉普拉斯变换,并利用MATLAB绘制拉普拉斯变换的曲面图。

解:该信号的拉普拉斯变换为:

利用上面介绍的方法来绘制单边正弦信号拉普拉斯变换的曲面图,实现过程如下:

%绘制单边正弦信号拉普拉斯变换曲面图程序

 注释: meshgrid() 用来产生 矩阵 s  s 是一个复频域 a 为实部 b为 虚部

        ones()函数将器全部变成1

        mesh 函数可以画出曲面图 三维的

        abs() 取绝对值

代码:

close all;
a = -0.5:0.08:0.5;
b = -1.99:0.08:1.99;
[a,b] = meshgrid(a,b);
d = ones(size(a));
c = a +i*b;
c = c.*c;
c =c + d;
c = 1./c;
c = abs(c);
mesh(a,b,c);
surf(a,b,c);
axis([-0.5,0.5,-2,2,0,15]);
title('单边正弦信号拉斯变换曲线图');
colormap(hsv);

运行结果:





wangxiaoming CSDN认证博客专家 架构 Spring Boot Redis
博客是很好的总结和记录工具,如果有问题,来不及回复,关注微信公众号:程序员开发者社区,获取我的联系方式,向我提问,也可以给我发送邮件,联系 1275801617@qq.com
©️2020 CSDN 皮肤主题: Age of Ai 设计师: meimeiellie 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值