全排列

深入理解 JVM 原理
深入理解 JVM 原理
wangxiaoming

G:全排列

总Time Limit: 
1000ms 
Memory Limit: 
65536kB
Description

对于数组[1, 2, 3],他们按照从小到大的全排列是

1 2 3

1 3 2

2 1 3

2 3 1

3 1 2

3 2 1

现在给你一个正整数n,n小于8,输出数组[1, 2, …,n]的从小到大的全排列。


Input
输入有多行,每行一个整数。当输入0时结束输入。
Output
对于每组输入,输出该组的全排列。每一行是一种可能的排列,共n个整数,每个整数用一个空格隔开,每行末尾没有空格。
Sample Input
230
Sample Output
1 2
2 1
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

题目大意: 主要是给出一个数n 现在要求你求出 1-- n 的数的全排列  
解题方法: 你有很多总解法 也可以用 STL 中的全排列函数进行求解


这个题是辽宁大学的寒假训练题。。。。。
#include<iostream>
#include<algorithm>
using namespace std;
#define  N 1000

int main()
{
    int n, i;
    int a[N];
    while(cin>>n)
    {
        if(n == 0)
        {
            return 0;
        }
        for(i = 1 ; i < n; i++)
        {
            a[i] = i ;
            cout<<i<<" ";
        }
        a[n] = n;
        cout<<n<<endl;
        while(next_permutation(a+1, a+n+1))
        {
            for(i = 1 ; i < n; i++)
            {
                cout<<a[i]<<" ";
            }
            cout<<a[n]<<endl;
        }
    }
    return 0;
}


下面给出一种递归方式的解答全排列的解法:
解法思路 :
                                                   A B C
  i= 1和 j = i;j <= n 进行交换还是  A B C        j = 2  B A C    j = 3  C A B
  i = 2                        A B C  A C B   j = 2  B A C ;B C A  ;j = 3  C A B ; C B A  //这个就是最后结果, 也就是算法的原理
 源代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define Max 10000

void  swap(char *a , char *b)
{//下面的交换更加正规
    char tmp ;
     tmp  = *a;
    *a = *b;
    *b = tmp ;
}
void  permute(char *a, int i, int n)
{
    //三个参量 分别表示 数组和 第i个字符
    if(i == n )
    {
        printf("%s\n", a);  //输出字符串
    }
    else
    {
        for(int j = i; j <= n; j++)
        {
            swap((a+i),(a+j));  //进行交换
            permute(a, i+1,n);
            swap((a+i),(a+j));   //将其进行交换回来
        }
    }
}
int main()
{
    //下面是主函数
    char str[Max];
    while(scanf("%s", str) != EOF)
    {
         int len = strlen(str);
         permute(str, 0, len-1) ;
    }
    return 0;
}


wangxiaoming CSDN认证博客专家 架构 Spring Boot Redis
博客是很好的总结和记录工具,如果有问题,来不及回复,关注微信公众号:程序员开发者社区,获取我的联系方式,向我提问,也可以给我发送邮件,联系 1275801617@qq.com
©️2020 CSDN 皮肤主题: Age of Ai 设计师: meimeiellie 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值