HDU 1018 大数问题

深入理解数据库原理
以实战为基础,以数据库原理为基础,结合实战,深入理解数据库原理。
wangxiaoming

Big Number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 22912    Accepted Submission(s): 10325


Problem Description
In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of the number.
 

Input
Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 ≤ n ≤ 107 on each line.
 

Output
The output contains the number of digits in the factorial of the integers appearing in the input.
 

Sample Input
2 10 20
 

Sample Output
7 19
 

题目大意:
           求一个数的阶乘 最终输出结果的位数
解题方法:
   利用公式:
两种做法:
一、

N!=1*2*3....*n

求以10 为底的对数就可以了

log10(n!)=log10(1)+ log10(2) +log10(3)...+log10(n);

不过最终误差 为 1 log10(10) = 1 位数相差1 

二、

斯特林数,第一类斯特林数就可以做这个!

斯特林数能够做一切关于阶乘有关的大数运算  具体内容自行百度

这里给出递归公式:

log10(n!)=1.0/2*log10(2*pi*n)+n*log10(n/e)

然后附上代码了;

#include<iostream>
#include<cmath>
using namespace std;

int main()
{
    int n , i, t;
    cin>>n;
    while(n--)
    {
        cin>>t;
        double  ans = 1;
        for(i = 1; i <= t; i++)
        {
            ans += log10((double)i);
        }
        cout<<(int)ans<<endl;
    }
    return 0;
}

其次 利用斯特林公式求解:

#include<iostream>
#include<cmath>

using namespace std;
#define pi 3.1415926
#define e  2.7182818284590452
int main()
{
    int t;
    cin>>t;
    while(t--)
    {
        int n ;
        cin>>n;
        int ans ;
        ans = 1.0/2*log10(2*pi*n) +n*log10(n/e);
        cout<<ans+1<<endl;

    }
    return 0;
}



                  


wangxiaoming CSDN认证博客专家 架构 Spring Boot Redis
博客是很好的总结和记录工具,如果有问题,来不及回复,关注微信公众号:程序员开发者社区,获取我的联系方式,向我提问,也可以给我发送邮件,联系 1275801617@qq.com
©️2020 CSDN 皮肤主题: Age of Ai 设计师: meimeiellie 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值