快速排序

                                      快速排序

 

方法其实很简单:分别从初始序列“6 1 2 7 9 3 4 5 10 8”两端开始“探测”。先从找一个小于6的数,再从找一个大于6的数,然后交换他们。这里可以用两个变量i和j,分别指向序列最左边和最右边。我们为这两个变量起个好听的名字“哨兵i”和“哨兵j”。刚开始的时候让哨兵i指向序列的最左边(即i=1),指向数字6。让哨兵j指向序列的最右边(即=10),指向数字。

这里写图片描述
首先哨兵j开始出动。因为此处设置的基准数是最左边的数,所以需要让哨兵j先出动,这一点非常重要(请自己想一想为什么)。哨兵j一步一步地向左挪动(即j–),直到找到一个小于6的数停下来。接下来哨兵i再一步一步向右挪动(即i++),直到找到一个数大于6的数停下来。最后哨兵j停在了数字5面前,哨兵i停在了数字7面前。
这里写图片描述
这里写图片描述
现在交换哨兵i和哨兵j所指向的元素的值。交换之后的序列如下:

6 1 2 5 9 3 4 7 10 8
这里写图片描述
这里写图片描述
到此,第一次交换结束。接下来开始哨兵j继续向左挪动(再友情提醒,每次必须是哨兵j先出发)。他发现了4(比基准数6要小,满足要求)之后停了下来。哨兵i也继续向右挪动的,他发现了9(比基准数6要大,满足要求)之后停了下来。此时再次进行交换,交换之后的序列如下:

6 1 2 5 4 3 9 7 10 8

第二次交换结束,“探测”继续。哨兵j继续向左挪动,他发现了3(比基准数6要小,满足要求)之后又停了下来。哨兵i继续向右移动,糟啦!此时哨兵i和哨兵j相遇了,哨兵i和哨兵j都走到3面前。说明此时“探测”结束。我们将基准数6和3进行交换。交换之后的序列如下:

3 1 2 5 4 6 9 7 10 8

这里写图片描述
这里写图片描述
这里写图片描述

到此第一轮“探测”真正结束。此时以基准数6为分界点,6左边的数都小于等于6,6右边的数都大于等于6。回顾一下刚才的过程,其实哨兵j的使命就是要找小于基准数的数,而哨兵i的使命就是要找大于基准数的数,直到i和j碰头为止。

OK,解释完毕。现在基准数6已经归位,它正好处在序列的第6位。此时我们已经将原来的序列,以6为分界点拆分成了两个序列,左边的序列是“3 1 2 5 4”,右边的序列是“9 7 10 8”。接下来还需要分别处理这两个序列。因为6左边和右边的序列目前都还是很混乱的。不过不要紧,我们已经掌握了方法,接下来只要模拟刚才的方法分别处理6左边和右边的序列即可。现在先来处理6左边的序列现吧。

 1、算法思想:

主要是你要找到一个基准,将数组分成两半,左边的全部小于基准值key右边的全部大于基准值key,这样就可以将数组分成两半,采用分治的思想,减少了算法的复杂度

2、实现方法:

第一步:从右往左找,找到第一个小于key的数

第二步:从左王右找,找到第一个大于key的数

 第三步:前两步,完成之后,交换他们的值

第四步:将key的值放在中间

第五步:利用递归的方式进行实现排序

注*这里要说明的问题是swap(int a, int b)在交换中容易出现的错误 如果a没有值的话,(值定义一个 int  a=Q[e] )  b有一个切确的值5   在这里是不能整场交换的

所以要采用swap(int * a,int *b);  去交换他们的地址,这样才能正常完成交换,达到你所需要的功能

  3、复杂度分析(最好的请况)

 首先:将数组分成log(n)层,,但是每一层都要调用n次 那么则是nlog(n)次 复杂度为O(nlog(n));

4、源代码( 这里提供算法导论版本的)

#include<iostream>
#include<ctime>
#include<cstdlib>
using namespace std;

void swap(int *a, int *b)
{
    int tmp;
    tmp = *a;
    *a = *b;
    *b = tmp;
}
int partion(int a[], int p, int r)
{
    int i, j ;
    srand((unsigned)time(NULL));
    int e = rand()%(r-p+1) + p; //随机生成一个位置 作为哨兵a[e]
    swap(&a[e], &a[r]);  //交换末尾位置和哨兵的值 此时 a[r] = a[e]
    int key = a[r];  // 右边作为基准 那么从左往右找,左边作为基准,从右往左找
    i = p-1; // 最左边的数
    for(j = p; j < r; j++)
    {// 从左往右找,好到第一个小于基准的数 交换他们的顺序
        if(a[j]<=key)
        {
            swap(&a[i+1],&a[j]);
            i++;
        }
    }
    swap(&a[i+1], &a[r]); //把基准放到他该放在的位置 i+1上,i+1这个就是排序排好了的位置
    return i+1;
}
void QuickSort(int a[], int p, int r)
{   //这个条件是因为
    if(p <r)
    {
        int q = partion(a, p, r);
        QuickSort(a, p, q-1 );
        QuickSort(a, q+1,r);
    }
}
int main(){
    int array[]={0,-2,11,-4,13,-5,14,-43};
    QuickSort(array,0,7);
    for(int i=0;i<=7;i++)
        cout<<array[i]<<" ";
    cout<<endl;
    return 0;
 }

还有Hoare版本。。。。。。。。

 

提供Java 版本的快排

public class QuickSortTest {

    /**
     * @param args
     */
    public static void main(String[] args) {
      int a[] = {1,3,2,56,2,3,0};
      int k = 3;
//      quickSort(a,0,a.length,3);
      quickSort(a,0,a.length-1);
      for(int i = 0; i < a.length; i++){
          System.out.println(a[i]);
      }

    }

    /**
     * @param a
     * @param i
     * @param length
     */
    private static void quickSort(int[] a, int start, int end) {
        int left = start;
        int right = end;
        int temp ;
        if(left >right ){
            return;
        }
        temp = a[start];
        
        while(left!=right){
            while(left<right && a[right] >=temp){
                // 理解循环,能进入的必定是满足while括号里面的条件的
                right--;
            }
           
            while(left <right && a[left] <=temp){
                left++;
            }
            // 左边找到第一个大于pivo的数字,右边找到第一个小于pivo的数字 交换他们的顺序
            if(left <right){
                int temp2 = a[left];
                a[left] = a[right];
                a[right]= temp2;
            }
        }
        // 上面肯定left== right 找到了基准位置应该在的位置
        a[start] = a[left];
        a[left] = temp;
        
        quickSort(a, start, left-1);
        quickSort(a, left+1, end);
        
    }

    /**
     * @param a
     * @param i
     * @param length
     * @param j 
     */
    private static void quickSort(int[] a, int start, int end, int j) {
       int left = start;
       int right = end;
       
      
       if(left >= right)
       {
           return;
       }
       //选择一个哨兵
       int temp = a[left];
      
       while(left!=right){
           // 先从右边往左边找
           while(left<right && a[right] >=temp){
               right--;
           }
           if(left <right){
               a[left++] = a[right];
           }
           
           //从左边找到一个小于temp的数字,放到右边去
           while(left <right && a[left] <=temp){
               left++;
           }
           if(left <right){
               a[right--] = a[left];
           }
       }
       a[right]= temp;
       
//       if(left)
        
    }

}

 

 

 

wangxiaoming CSDN认证博客专家 架构 Spring Boot Redis
博客是很好的总结和记录工具,如果有问题,来不及回复,关注微信公众号:程序员开发者社区,获取我的联系方式,向我提问,也可以给我发送邮件,联系 1275801617@qq.com
©️2020 CSDN 皮肤主题: Age of Ai 设计师: meimeiellie 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值