康托展开公式与在全排列中应用

康托展开公式

X=an*(n-1)!+an-1*(n-2)!+...+ai*(i-1)!+...+a2*1!+a1*0!

怎样知道其中一种排列是有序序列中的第几个?

康托展开. {1…n}的全排列由小到大有序,s[]为第几个数

{1,2,3,4,…,n}的排列总共有n!种,将它们从小到大排序,怎样知道其中一种排列是有序序列中的第几个?

如 {1,2,3} 按从小到大排列一共6个:123 132 213 231 312 321。想知道321是{1,2,3}中第几个大的数。

这样考虑:

  • 第一位是3,小于3的数有1、2 。所以有2*2!个。
  • 再看小于第二位,小于2的数只有一个就是1 ,所以有1*1!=1
  • 所以小于32 的{1,2,3}排列数有22!+11!=5个。所以321是第6个大的数。

22!+11!是康托展开。

康托逆运算

康托展开的逆运算. {1…n}的全排列,中的第k个数为s[] {1,2,3,4,5}的全排列已经从小到大排序,要找出第16个数:

 1. 首先用16-1得到15
 2. 用15去除4! 得到0余15
 3. 用15去除3! 得到2余3
 4. 用3去除2! 得到1余1
 5. 用1去除1! 得到1余0
 6. 有0个数比它小的数是1所以第一位是1
 7. 有2个数比它小的数是3,但1已经在之前出现过了所以是4
 8.有1个数比它小的数是2,但1已经在之前出现过了所以是3
 9.有1个数比它小的数是2,但1,3,4都出现过了所以是5
  最后一个数只能是2
  所以这个数是14352

代码

public class KangTuo {
    /**
     * 康托展开: X=an*(n-1)!+an-1*(n-2)!+...+ai*(i-1)!+...+a2*1!+a1*0!
     * ai为整数,并且0<=ai<i(1<=i<=n)
     */
    
    private int fac[] = {1,1,2,6,24,120,720,5040,40320}; //i的阶乘为fac[i]   

    /*
     * 康托展开. {1...n}的全排列由小到大有序,s[]为第几个数
     * {1,2,3,4,...,n}的排列总共有n!种,将它们从小到大排序,怎样知道其中一种排列是有序序列中的第几个?
     * 
     * 如 {1,2,3} 按从小到大排列一共6个:123 132 213 231 312 321。想知道321是{1,2,3}中第几个大的数。
     * 这样考虑:第一位是3,小于3的数有1、2 。所以有2*2!个。再看小于第二位,小于2的数只有一个就是1 ,所以有1*1!=1 所以小于32
     * 
     * 的{1,2,3}排列数有2*2!+1*1!=5个。所以321是第6个大的数。2*2!+1*1!是康托展开。
     */
    public int KangTuo(int n, int s[])  
    {  
        int sum = 0;
        for(int i = 0; i < n; i++){
            int t = 0;
            for(int j = i+1; j < n;j++){
                if(s[i] > s[j]){
                    t++;
                }
            }
            sum += t *fac[n-i-1];
        }
        return sum+1;
    }  
    
    
    /*
     * 康托展开的逆运算. {1...n}的全排列,中的第k个数为s[] {1,2,3,4,5}的全排列已经从小到大排序,要找出第16个数:
     * 
     * 1. 首先用16-1得到15
     * 
     * 2. 用15去除4! 得到0余15
     * 
     * 3. 用15去除3! 得到2余3
     * 
     * 4. 用3去除2! 得到1余1
     * 
     * 5. 用1去除1! 得到1余0
     * 
     * 有0个数比它小的数是1
     * 
     * 所以第一位是1
     * 
     * 有2个数比它小的数是3,但1已经在之前出现过了所以是4
     * 
     * 有1个数比它小的数是2,但1已经在之前出现过了所以是3
     * 
     * 有1个数比它小的数是2,但1,3,4都出现过了所以是5
     * 
     * 最后一个数只能是2
     * 
     * 所以这个数是14352
     */
    public void invKT(int n, int k, int s[]) {
        int i, j, t;
        int[] vst = new int[8];
        k--;
        for (i = 0; i < n; i++) {
            t = k / fac[n - i - 1];
            for (j = 1; j <= n; j++)
                if (0 == vst[j]) {
                    if (t == 0)
                        break;
                    t--;
                }
            s[i] = j;
            vst[j] = 1;
            k %= fac[n - i - 1];
        }
    }

    /**
     * @param args
     */
    public static void main(String[] args) {
        
//        int[] s = new int[]{1,2,4};
        int[] s = new int[]{3,2,1};
        System.out.println(new KangTuo().KangTuo(s.length, s));

    }

}
欢迎关注公众号:程序员开发者社区

在这里插入图片描述

wangxiaoming CSDN认证博客专家 架构 Spring Boot Redis
博客是很好的总结和记录工具,如果有问题,来不及回复,关注微信公众号:程序员开发者社区,获取我的联系方式,向我提问,也可以给我发送邮件,联系 1275801617@qq.com
92讲视频课+16大项目实战+源码+¥800元课程礼包+讲师社群1V1答疑+社群闭门分享会=99元   为什么学习数据分析?       人工智能、大数据时代有什么技能是可以运用在各种行业的?数据分析就是。       从海量数据获得别人看不见的信息,创业者可以通过数据分析来优化产品,营销人员可以通过数据分析改进营销策略,产品经理可以通过数据分析洞察用户习惯,金融从业者可以通过数据分析规避投资风险,程序员可以通过数据分析进一步挖掘出数据价值,它和编程一样,本质上也是一个工具,通过数据来对现实事物进行分析和识别的能力。不管你从事什么行业,掌握了数据分析能力,往往在其岗位上更有竞争力。    本课程共包含五大模块: 一、先导篇: 通过分析数据分析师的一天,让学员了解面了解成为一个数据分析师的所有必修功法,对数据分析师不在迷惑。   二、基础篇: 围绕Python基础语法介绍、数据预处理、数据可视化以及数据分析与挖掘......这些核心技能模块展开,帮助你快速而面的掌握和了解成为一个数据分析师的所有必修功法。   三、数据采集篇: 通过网络爬虫实战解决数据分析的必经之路:数据从何来的问题,讲解常见的爬虫套路并利用三大实战帮助学员扎实数据采集能力,避免没有数据可分析的尴尬。   四、分析工具篇: 讲解数据分析避不开的科学计算库Numpy、数据分析工具Pandas及常见可视化工具Matplotlib。   五、算法篇: 算法是数据分析的精华,课程精选10大算法,包括分类、聚类、预测3大类型,每个算法都从原理和案例两个角度学习,让你不仅能用起来,了解原理,还能知道为什么这么做。
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页
实付 19.89元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值