康托展开公式与在全排列中应用

康托展开公式

X=an*(n-1)!+an-1*(n-2)!+...+ai*(i-1)!+...+a2*1!+a1*0!

怎样知道其中一种排列是有序序列中的第几个?

康托展开. {1…n}的全排列由小到大有序,s[]为第几个数

{1,2,3,4,…,n}的排列总共有n!种,将它们从小到大排序,怎样知道其中一种排列是有序序列中的第几个?

如 {1,2,3} 按从小到大排列一共6个:123 132 213 231 312 321。想知道321是{1,2,3}中第几个大的数。

这样考虑:

  • 第一位是3,小于3的数有1、2 。所以有2*2!个。
  • 再看小于第二位,小于2的数只有一个就是1 ,所以有1*1!=1
  • 所以小于32 的{1,2,3}排列数有22!+11!=5个。所以321是第6个大的数。

22!+11!是康托展开。

康托逆运算

康托展开的逆运算. {1…n}的全排列,中的第k个数为s[] {1,2,3,4,5}的全排列已经从小到大排序,要找出第16个数:

 1. 首先用16-1得到15
 2. 用15去除4! 得到0余15
 3. 用15去除3! 得到2余3
 4. 用3去除2! 得到1余1
 5. 用1去除1! 得到1余0
 6. 有0个数比它小的数是1所以第一位是1
 7. 有2个数比它小的数是3,但1已经在之前出现过了所以是4
 8.有1个数比它小的数是2,但1已经在之前出现过了所以是3
 9.有1个数比它小的数是2,但1,3,4都出现过了所以是5
  最后一个数只能是2
wangxiaoming CSDN认证博客专家 架构 Spring Boot Redis
博客是很好的总结和记录工具,如果有问题,来不及回复,关注微信公众号:程序员开发者社区,获取我的联系方式,向我提问,也可以给我发送邮件,联系 1275801617@qq.com
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页
实付 19.89元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值